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Abstra
t. Eye movement data may be used for many various purposes.

In most 
ases it is utilized to estimate a gaze point - that is a pla
e

where a person is looking at. Most devi
es registering eye movements,


alled eye tra
kers, return information about relative position of an eye,

without information about a gaze point. To obtain this information, it

is ne
essary to build a fun
tion that maps output from an eye tra
ker to

horizontal and verti
al 
oordinates of a gaze point. Usually eye movement

is re
orded when a user tra
ks a group of stimuli being a set of points

displayed on a s
reen. The paper analyzes possible s
enarios of su
h

stimulus presentation and dis
uses an in�uen
e of usage of �ve di�erent

regression fun
tions and two di�erent head mounted eye tra
kers on the

results.
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1 Introdu
tion

Eye movement data may be used for many various purposes. In most 
ases it

is used to estimate a gaze point - that is a pla
e where a person is looking at.

Most devi
es registering eye movements, 
alled eye tra
kers, return information

about relative position of an eye, without information about the gaze point. To

obtain this information it is ne
essary to build a fun
tion that maps an output

from the eye tra
ker to horizontal and verti
al 
oordinates of a gaze point. It is

typi
ally done using information about eyes position when an examined person

is looking at a set of points (
alled Points of Regard or PoRs). There are several

problems that must be addressed when preparing su
h a fun
tion:

� How many points to use

� How to lo
ate the points - i.e. point's layout

� How long to present the stimulus in ea
h point

� What type of mapping fun
tion to use

� Whi
h measurements to use as mapping fun
tion input

� How to 
he
k the validity of the fun
tion

The paper dis
usses some of issues enlisted above using two di�erent eye

tra
kers and a 
onsiderable amount of data registered during a 
ouple of sessions.
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The main 
ontribution of the paper is de�ning guidelines whi
h may be used

when preparing own 
alibration pro
edures.

While it seems obvious that more 
alibration points and a longer presenta-

tion of points gives more data to build mapping model, it should also be taken

into a

ount that too 
ompli
ated 
alibration pro
edure is in
onvenient for par-

ti
ipants. Parti
ipants may be tired or annoyed with a long preparation phase

and tend to loss their 
on
entration during the 
alibration pro
ess itself and -

what may be even worse - during the subsequent experiment. Therefore, the

main obje
tive of the 
alibration step is to gather and analyze su�
ient amount

of data during a pro
edure that is as short and simple as possible.

The pattern whi
h is most widely (eg. [13℄[18℄) used to present stimuli to

parti
ipant is the square grid, whi
h typi
ally 
onsist of 9 to 25 points. Ra-

manauskas et al. [13℄ 
on�rm what was mentioned above, that higher number

of points in this 
on�guration usually results with better performan
e. Ohno

et al. [19℄ propose an eye tra
king system whi
h uses only 2 
alibration points,

however this setup requires to maintain very stri
t relations between a 
amera,

an IR illuminator and an eye.

2 Experiment setup

There were two di�erent eye tra
kers used during the experiment.

The �rst one was a head mounted Jazz-Novo eye tra
ker (produ
t of Ober-


onsulting) that re
ords eye positions with 1000Hz. It uses Dire
t Infra Red

O
ulography (IROG) and utilizes pairs of IR emitters and sensors. The op-

toele
troni
 transdu
ers are lo
ated between the eyes, thus hiding the sensor

assembly behind the "shadow" of the nose.

The se
ond eye tra
ker was the VOG head-mounted eye tra
ker developed

with a single CMOS 
amera with USB 2.0 interfa
e (Logite
h Qui
kCam Ex-

press) possessing 352 x 288 sensor and lens with IR-Pass �lter. The 
amera was

mounted on the arm atta
hed to head and was pointing at the right eye. The eye

was illuminated with single IR LED pla
ed o� the axis of the eye that 
aused

"dark pupil" e�e
t, whi
h was useful during a pupil dete
tion. The system gen-

erated 20 - 25 measurements of a 
enter of a pupil per se
ond.

Both eye tra
kers were used in a usual points of regard 
alibration experi-

ment. The parti
ipants of the experiment were looking at a stimulus presented on

a s
reen. The stimulus was a 
ir
le pulsating on the s
reen to attra
t parti
ipant's

attention. There were 29 di�erent stimulus lo
ations (Fig 1). The stimulus was

displayed for about 3 se
onds in ea
h lo
ation. The order of stimuli presentation

was the same for ea
h session.

In both 
ases the experiment was done on a 1280 x 1024 (370mm x 295mm)

�at s
reen. The eye-s
reen distan
e was 500mm, verti
al gaze angle was 40 deg

and horizontal gaze angle was 32 deg.

There were overall 88 sessions with 39 sessions for Jazz-Novo eye tra
ker and

49 sessions for VOG eye tra
ker.
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(b) Testing points

Fig. 1. Points used during sessions

3 Calibration algorithms

The obje
tive of an eye tra
ker is to determine a gaze point - that is a pla
e

where the user is looking at - with the best possible a

ura
y. There are three

main fa
tors that in�uen
e the a

ura
y of an VOG eye tra
ker:

� Quality of the registered image

� Quality of the algorithm used for extra
ting image features
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� Quality of the algorithm that is used to map the extra
ted features to point

of regard (gaze point)

It is worth emphasizing that the aim of des
ribed study is to analyze how to

improve the third of the aforementioned elements, that is mapping image features

to point of regard (PoR).

The data was divided into training and testing part. The �rst 13 stimulus

lo
ations (points) were used for training (Fig 1(a)). All tests and errors of the

estimation were always 
al
ulated on the last 16 points (Fig 1(b)). Various 
om-

binations of 13 points were used to 
reate 61 sets di�ering in the number of

points used and their lo
ations. The sets 
an be divided into �ve groups di�er-

ing in the number of points. There were 19 sets of 5 points, 20 sets of 7 points, 9

sets of 9 points and 12 sets of 11 points prepared. Additionally, there was a one

"full" set of all 13 points used. Due to limited spa
e, the detailed des
ription of

the sets is not presented here.

Ea
h of de�ned sets was then used to build a model mapping an eye tra
ker

output to gaze 
oordinates on the s
reen. Su
h a model 
onsists of two fun
tions:

xs = f(xe, ye) (1)

ys = f(xe, ye)

where xe and ye represent data obtained from an eye tra
ker and xs and ys are

estimated gaze 
oordinates on a s
reen.

There are multiple possible regression fun
tions to be used. In this study

three types of su
h fun
tions were used: the polynomial fun
tions, the arti�
ial

neural network (ANN) and the support ve
tor regression (SVR).

3.1 Polynomial fun
tions

The most 
ommon 
hoi
e for a 
alibration fun
tion is usage of polynomial fun
-

tions, whi
h 
an di�er in the degree and number of terms. Two 
omprehensive

studies analyzed possible solutions [3℄[1℄. There were three 
lassi
 fun
tions used

in this work: a linear fun
tion, a quadrati
 fun
tion and a 
ubi
 fun
tion with

all possible terms.

Linear equation

xs = Axxe +Bxye + Cx (2)

ys = Ayxe +Byye + Cy

Quadrati
 equation

xs = Axx
2

e +Bxy
2

e + Cxxe +Dxye + Ex (3)

ys = Ayx
2

e +Byy
2

e + Cyxe +Dyye + Ey

Cubi
 equation

xs = Axx
3

e +Bxy
3

e + Cxx
2

eye +Dxxey
2

e + Exxeye

+ Fxx
2

e +Gxy
2

e +Hxye + Ixye + Jx
(4)
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ys = Ayx
3

e +Byy
3

e + Cyx
2

eye +Dyxey
2

e + Eyxeye

+ Fyx
2

e +Gyy
2

e +Hyye + Iyye + Jy

For ea
h fun
tion the 
oe�
ients were 
al
ulated based on training points

values using Levenberg-Marquardt algorithm.

3.2 ANN

The se
ond type of fun
tion was an arti�
ial neural network (ANN). An a
ti-

vation network with sigmoid fun
tion as an a
tivation fun
tion was used. The

network was trained until the total train error was lower than 0.1, using the

Ba
k Propagation algorithm, with normalized samples re
orded during a ses-

sion. Con�guration of the network 
onsisted of two neurons in the input layer,

10 neurons in one hidden layer and two neurons as the output. ANN has been

already used in several eye tra
ing appli
ations [6℄[17℄.

3.3 SVR

The Support Ve
tor Regression (SVR) [14℄ was of the last of analyzed types. The

RBF kernel with parameters C = 10 and γ = 8 was used. The similar fun
tion

has been utilized for an eye tra
ker 
alibration in [12℄ and [9℄ but in 
ompletely

di�erent setups.

4 Results

Experiments were 
ondu
ted for all sets of 
alibration points and for all sessions

what gave 11.925 (39 sessions x 61 sets x 5 fun
tions) models for Jazz-novo and

14.935 (49 sessions x 61 sets x 5 fun
tions) models for VOG eye tra
ker. Every

model represented 
ombination of a fun
tion, a session and a set of training

points. All models were 
he
ked using 16 testing points from the same session

(Fig 1(b)). The error represented in degrees (Edeg) was 
al
ulated based on

them. Additionally, it was determinant 
oe�
ient (R2
) 
al
ulated independently

for both axes.

Edeg =
1

n

∑

i

√
(xi − x̂i)2 + (yi − ŷi)2 (5)

R2 = 1−

∑
i (yi − ŷi)

2

∑
i (yi − ȳ)2

(6)

where yi, xi represent an observed value, ŷi, x̂i represent a value 
al
ulated by

model and ȳ, x̄ is the mean of observed values.

It must be emphasized, that it takes some time an eye to rea
t to stimulus

position 
hange to �xate on another position. Su
h o

urren
e is 
alled sa

adi


laten
y and lasts approximately 100-300 mse
. In many 
ases this �rst �xation

is not a

urate and is 
orre
ted. During earlier experiments (not published yet)

it was 
al
ulated that the safest range of measurements to in
lude for further
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studies is from 700 mse
. to 1800 mse
. after the stimulus position 
hanged.

Therefore, only these measurements were taken into a

ount in both training and

validation phases. It gave about 20-30 samples per point for VOG eye tra
ker

and more than 1000 samples for the Jazz-Novo eye tra
ker. As so big number

of features was 
omputationally di�
ult for the ANN and the SVR methods,

Jazz-Novo data was downsampled to 50Hz by 
al
ulating a median for every 20

subsequent measurements. Su
h downsampling pro
ess didn't a�e
t results of

the 
alibration, whi
h was 
he
ked using the polynomial fun
tions.

4.1 Model validity

While 
he
king the 
orre
tness and the a

ura
y of de�ned models, it o

urred

that some models gave 
ompletely in
orre
t results for testing samples. It re-

sulted in R2

oe�
ient values to be
ome lower than zero, whi
h means that the

modeled 
urve had errors higher than the average of testing samples. It was de-


ided to reje
t su
h models as 
ompletely not feasible. Additionally, the number

of reje
tions was 
al
ulated for ea
h fun
tion and group (i.e. sets with the same

number of points). The model was reje
ted if any of R2

x or R2

y 
oe�
ients values

for that model was lower than zero. Su
h stri
t 
ondition resulted in reje
tion of

14.7% models for VOG eye tra
ker. The reje
tion per
entage for di�erent groups

and fun
tions is presented in Table 1. It 
an be observed that the reje
tion per-

Group x
1

x
2

x
3

ANN SVR

5 16.2% 32.4% 87.2% 10.4% 15.9%

7 5.7% 6.1% 35.1% 2.2% 3.8%

9 3.9% 2.7% 14.5% 1.4% 0.9%

11 2.6% 2.0% 5.1% 0.5% 0.3%

13 2.0% 2.0% 2.0% 0.0% 0.0%

Table 1. Reje
tions per
entage for VOG eye tra
ker


entage was lower when more 
alibration points were taken into a

ount. For 5

points almost 90% of models were not feasible for the 
ubi
 (x3
) fun
tion. It must

be remembered that a 
ubi
 fun
tion requires 
al
ulation of 18 parameters so it

needs more data than e.g. a linear fun
tion. The ANN and the SVR fun
tions

were stable for ea
h 
lass and the number of reje
tions was always lower than

for the polynomial fun
tions. Similar results - but with higher reje
tion rates -

were a
hieved for the Jazz-novo eye-tra
ker. The only important di�eren
e was

that the ANN and the SVR fun
tions gave mu
h higher reje
tion rates for this

devi
e.

4.2 Multidimensional analysis of the re
orded data

Filtered data was analyzed taking few aspe
ts into a

ount. It was interesting to


he
k how the average error 
hanged when various number of points 
onstituted
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training set and what is an in�uen
e of a fun
tion used to build a regression

model. And �nally a question on the impa
t of a 
alibration points layout on

de�ned model a

ura
y was asked. All issues were 
onsidered separately for both

eye tra
kers used in the experiments.

Fun
tions 
omparisons. The �rst step of the analysis mentioned above was to


ompare a

ura
y of di�erent fun
tions using Edeg value - that is average angular

error. As 
an be seen in table 2 the best average results for the VOG system

VOG Jazz

Fun
 Edeg SD Fun
 Edeg SD

x
2

2.717 1.846 x
2

4.012 1.895

SVR 2.786 1.680 x
1

4.070 2.0188

x
1

3.135 1.965 x
3

4.671 1.762

ANN 3.268 1.650 ANN 5.388 1.672

x
3

3.485 1.770 SVR 7.019 1.705

Table 2. Errors by fun
tion

gave the quadrati
 fun
tion x2
. However the di�eren
e between x2

and SVR is

not signi�
ant (p = 0.07). Signi�
ant di�eren
es 
an be noti
ed in relation to

other fun
tions.

For Jazz the best fun
tion was x2
although the di�eren
e between x1

and x2

was not signi�
ant. What was interesting that the SVR and the ANN fun
tions

were signi�
antly worse for the Jazz-novo eye-tra
ker.

When errors for various number of points were analyzed, it o

urred that for

5-points groups and VOG results the linear fun
tion (x1
) be
ame better than

SVR and the signi�
ant di�eren
e 
an only be noti
ed for the ANN and the


ubi
 (x3
) fun
tion being the worst methods (table 3). For Jazz x1

fun
tion is

signi�
antly the best fun
tion for 5-points 
alibration. On the 
ontrary for 13-

VOG Jazz-novo

Fun
 Edeg SD Fun
 Edeg SD

x
1

4.427 1.945 x
2

3.415 2.029

x
2

4.786 1.783 x
1

3.561 2.130

ANN 6.037 1.623 SVR 3.588 1.867

x
3

6.082 1.618 ANN 3.986 1.797

SVR 8.100 1.1486 x
3

5.421 1.638

Table 3. Errors by fun
tion for sets with 5 points

points group the SVR method be
ame the best method and the linear fun
tion

x1
be
ame signi�
antly the worst one. For the Jazz-novo devi
e all polynomial

fun
tions were the best ones but with no signi�
ant di�eren
es (table 5).
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VOG Jazz-novo

Fun
 Edeg SD Fun
 Edeg SD

SVR 1.995 1.401 x
3

3.349 1.585

x
3

2.138 1.510 x
2

3.629 2.017

x
2

2.323 1.572 x
1

4.079 2.321

ANN 2.328 1.385 ANN 4.302 1.554

x
1

2.930 1.894 SVR 5.301 1.799

Table 4. Errors by fun
tion for 13 points set

Number of points 
omparison. When average errors were 
al
ulated for set

with various numbers of points it o

urred that, as it 
ould be expe
ted, 13-

points set gave lowest errors (table 5). However, the di�eren
es between 13 and

11 points groups were not signi�
ant for both eye tra
kers. Additionally, when

similar 
omparison was done only for models that used x2
fun
tion (table 6), it

turned out that the di�eren
es between groups 13,11,9 and 7 were not signi�
ant.

It shows that higher number of 
alibration points not ne
essarily 
auses lower

error rates.

VOG Jazz-novo

Points Edeg SD Points Edeg SD

13 2.341 1.594 13 4.455 2.737

11 2.522 1.629 11 4.710 2.679

9 2.806 1.656 9 5.130 2.769

7 3.073 1.704 7 5.546 2.817

5 3.722 1.983 5 6.338 2.697

Table 5. Errors by number of points in set

VOG Jazz-novo

Points Edeg SD Edeg SD

13 2.323 1.572 3.629 2.017

11 2.396 1.628 3.662 1.948

9 2.461 1.699 3.801 1.933

7 2.580 1.799 3.891 1.770

5 3.415 2.029 4.786 1.783

Table 6. Errors by number of points in set for x
2
fun
tion

Finding the best models. Sear
hing for the best models, the 
omparison of

the Edeg errors was performed. All results were sorted with as
ending order and
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ten sets with the lowest error values were analyzed. The analysis was done both

for ea
h fun
tion independently and for all fun
tions together, however data from

di�erent eye tra
kers were treated as autonomous sets.

In table 7 there were presented the best results in form of ten sets with the

lowest Edeg average error values. On
e again, due to limitation of the paper

size, only results subset 
on
erning polynomial fun
tions were showed. It 
an

Jazz-novo VOG

Fun
tion Points No Edeg Fun
tion Points No Edeg

x
3

13 1 3.349 x
3

11 9 2.058

x
2

7 16 3.357 x
3

13 1 2.138

x
1

7 13 3.377 x
2

11 9 2.256

x
2

11 12 3.450 x
2

9 2 2.261

x
2

9 7 3.476 x
2

7 1 2.265

x
2

7 13 3.480 x
3

11 1 2.267

x
2

9 2 3.518 x
2

7 7 2.270

x
2

11 1 3.545 x
3

11 12 2.287

x
2

11 7 3.547 x
2

7 10 2.289

x
2

11 10 3.573 x
2

11 8 2.291

Table 7. Best ten sets with lowest Edeg.

be observed that for both devi
es the set 13_1 - that is the referen
e set using

all training points - together with the most 
ompli
ated polynomial fun
tion x3

provided one of the best results (the lowest Edeg error). But it turned out that

the di�eren
es between this set and other sets with lower number of points are

not signi�
ant. Espe
ially for Jazz-novo there are two models (x2_7_16 and

x1_7_13) for whi
h the results are almost the same. It shows that the number

of 
alibration points not ne
essarily results in lower error rates.

Interesting situation 
an be observed when analyzing the SVR and the ANN

fun
tions. It o

urs that for the VOG system SVR outperformed all other fun
-

tions (with 9 of 10 best models) and ANN gave results 
omparable to the polyno-

mial fun
tions (with the best result 2.166 for ANN_11_8). Quite di�erently in


ase of Jazz-novo eye-tra
ker the SVR methods provided very bad results (with

5.13 Edeg for set 13_1) and ANN was only a fra
tion better (with 4.30 for set

13_1). Su
h bad results require further studies.

In the next step sets di�ering in number and layouts of points were analyzed

in terms of their usefulness for building a 
alibration model. This analysis, based

on ten sets for whi
h the lowest Edeg error values were obtained, was done for

ea
h of the fun
tions used. It was expe
ted that groups of the 
hosen sets would

be dominated by sets with higher number of 
alibration points. The 
ondu
ted

studies 
on�rmed this assumptions for 
ubi
, ANN and SVR methods where sets

with 11 points 
onstituted majority of a group. However, in 
ase of linear and

quadrati
 fun
tions, greater diversity of sets types was observed. There were sets

with 5, 7 and 9 points espe
ially for the �rst of mentioned methods.
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These �ndings regard both types of eye-tra
kers although some di�eren
es

were noti
ed. It 
on
erned the quality of results a
hieved for the parti
ular fun
-

tions. The average error rates obtained in 
ase of the Jazz-novo eye-tra
ker with

regard to linear and quadrati
 fun
tions were lower than for 
ubi
, ANN and

SVR ones, even though they were 
al
ulated using lower number of points. The

opposite situation was determined in 
ase of the se
ond eye-tra
ker. The 
u-

bi
, ANN and SVR methods provided the lower average error values than other

polynomial fun
tions.

Point lo
ation 
omparison. As it was shown in the previous se
tion, groups

with lower number of points may be as good as groups with higher number of

points when a 
orre
t fun
tion is used. In this se
tion di�erent sets with the same

number of points were 
ompared to �nd out if the points lo
ation in�uen
es

error rates. For this purpose the average error for all analyzed fun
tions and

for ea
h set of points was 
al
ulated. The results for the VOG eye tra
ker are

gathered in table 8. Analysis of these results showed that in 
ase of the VOG

Set Edeg Set Edeg Set Edeg

5_7 2.81 7_2 2.79 9_2 2.56

5_2 3.27 7_7 2.83 9_8 2.64

5_8 3.28 7_18 2.89 9_1 2.64

5_15 3.31 7_13 2.90 9_6 2.68

5_1 3.39 7_14 2.92 9_7 2.73

5_19 3.74 7_8 2.93 9_5 2.78

5_17 3.86 7_15 2.93 9_9 2.97

5_3 3.87 7_17 2.93 9_10 3.07

5_18 3.93 7_1 2.94 9_3 3.28

5_12 3.93 7_10 3.04 11_9 2.28

5_4 4.12 7_16 3.05 11_1 2.36

5_11 4.17 7_9 3.07 11_10 2.37

5_13 4.31 7_6 3.11 11_8 2.42

5_16 4.40 7_5 3.22 11_2 2.48

5_14 4.47 7_4 3.32 11_7 2.48

5_10 4.60 7_3 3.62 11_5 2.59

5_9 6.13 7_19 3.71 11_12 2.62

5_6 7.38 7_12 3.72 11_11 2.63

5_5 7.75 7_20 3.76 11_6 2.66

7_11 4.06 11_4 2.69

11_3 2.70

Table 8. Errors for sets ordered by group and error rate (VOG)

eye tra
ker there were signi�
ant di�eren
es for all �ve points group (19 sets).

Among them the best set 5_7 (points: 3,6,9,12,13) giving average error 2.8 deg

and the worst set 5_5 (points: 1,7,9,12,13) with an average error equal to 7.74
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deg 
an be mentioned. After deeper layout examination it o

urred that the

lowest errors are 
al
ulated for sets 
ontaining point number 3 and 6 (north and

south positions on the s
reen) and additionally of some points in the middle

(10,11,12,13). Utilizing points in 
orners of the s
reen resulted in signi�
antly

higher errors. Similar situation was observed for the VOG system in 
ase of seven

points group (20 sets) although the di�eren
es were not so signi�
ant (from 2.78

deg for set 7_2 to 4.06 for set 7_11). There were no signi�
ant di�eren
es in

points layout for sets with 9 and 11 points noti
ed.

Studying results for the se
ond eye tra
ker Jazz-novo it was observed that

there were signi�
ant di�eren
es in 5-points group as well. However, the results

varied from that obtained in the VOG 
ase. Although the same two sets (5_5

and 5_6) were the worst ones, there were sets for whi
h Jazz-novo worked mu
h

better than VOG eye tra
ker. The 5_9 set with points on the left side of the

s
reen 
an be taken as an example. In general, points lo
ated in the 
orners of the

s
reen did not in�uen
e signi�
antly Jazz-novo out
ome - 5_19 set with points

1,5,7,8,9 was the fourth of best models. As it was stated above, their usage in


ase of the VOG system entitled higher error rates.

Di�eren
es for all other groups (7,9 and 11) were not signi�
ant but similar

trends to the VOG system �ndings were observed.

5 Con
lusions

The main goal of the resear
h was to 
he
k repeatability of results for both

various regression fun
tions being used and various numbers and layouts of 
al-

ibration points. To a
hieve this goal two di�erent eye tra
kers were used. Using

them two environments were developed to test �ve various fun
tions operating

on 61 sets of 
alibration points. These sets di�ered with numbers of points and

their position on the s
reen. The obtained results were 
ompared in terms of

type of devi
e, type of fun
tion and type of 
alibration points sets. There were

some signi�
ant di�eren
es found. For instan
e simpler regression fun
tions like

x1
or x2

operated better than more 
ompli
ated (like x3
or SVR) on sets with

lower number of points. Some spe
i�
 sets with 7 points gave results 
omparable

to 13 points sets. In the same time it was showed that 
alibration results highly

depend on the type of eye tra
ker: (1) Points lo
ations in s
reen 
orners were

not a good solution for VOG while gave very good results for Jazz-novo. (2)

Regression fun
tions SVR and ANN worked very good for VOG eye tra
ker and

very bad for Jazz-novo. (3) x2
fun
tion outperformed x1

fun
tion for VOG but

the results of both were similar for Jazz-novo. Therefore, pointing out the best


alibration set, whi
h worked well for all fun
tions and for both devi
es, turned

out to be di�
ult.

Be
ause the presented studies fo
used on making the 
omparison des
ribed

above, the further resear
h are planned to be aimed at an improvement of the

parti
ular results separately for ea
h eye tra
ker.
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