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Abstract. Eye movement data may be used for many various purposes.
In most cases it is utilized to estimate a gaze point - that is a place
where a person is looking at. Most devices registering eye movements,
called eye trackers, return information about relative position of an eye,
without information about a gaze point. To obtain this information, it
is necessary to build a function that maps output from an eye tracker to
horizontal and vertical coordinates of a gaze point. Usually eye movement
is recorded when a user tracks a group of stimuli being a set of points
displayed on a screen. The paper analyzes possible scenarios of such
stimulus presentation and discuses an influence of usage of five different
regression functions and two different head mounted eye trackers on the
results.
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1 Introduction

Eye movement data may be used for many various purposes. In most cases it
is used to estimate a gaze point - that is a place where a person is looking at.
Most devices registering eye movements, called eye trackers, return information
about relative position of an eye, without information about the gaze point. To
obtain this information it is necessary to build a function that maps an output
from the eye tracker to horizontal and vertical coordinates of a gaze point. It is
typically done using information about eyes position when an examined person
is looking at a set of points (called Points of Regard or PoRs). There are several
problems that must be addressed when preparing such a function:

How many points to use

— How to locate the points - i.e. point’s layout

How long to present the stimulus in each point

What type of mapping function to use

— Which measurements to use as mapping function input
How to check the validity of the function

The paper discusses some of issues enlisted above using two different eye
trackers and a considerable amount of data registered during a couple of sessions.
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The main contribution of the paper is defining guidelines which may be used

when preparing own calibration procedures.

While it seems obvious that more calibration points and a longer presenta-
tion of points gives more data to build mapping model, it should also be taken
into account that too complicated calibration procedure is inconvenient for par-
ticipants. Participants may be tired or annoyed with a long preparation phase
and tend to loss their concentration during the calibration process itself and -
what may be even worse - during the subsequent experiment. Therefore, the
main objective of the calibration step is to gather and analyze sufficient amount
of data during a procedure that is as short and simple as possible.

The pattern which is most widely (eg. [13][18]) used to present stimuli to
participant is the square grid, which typically consist of 9 to 25 points. Ra-
manauskas et al. [13] confirm what was mentioned above, that higher number
of points in this configuration usually results with better performance. Ohno
et al. [19] propose an eye tracking system which uses only 2 calibration points,
however this setup requires to maintain very strict relations between a camera,
an IR illuminator and an eye.

2 Experiment setup

There were two different eye trackers used during the experiment.

The first one was a head mounted Jazz-Novo eye tracker (product of Ober-
consulting) that records eye positions with 1000Hz. It uses Direct Infra Red
Oculography (IROG) and utilizes pairs of IR emitters and sensors. The op-
toelectronic transducers are located between the eyes, thus hiding the sensor
assembly behind the "shadow" of the nose.

The second eye tracker was the VOG head-mounted eye tracker developed
with a single CMOS camera with USB 2.0 interface (Logitech QuickCam Ex-
press) possessing 352 x 288 sensor and lens with IR-Pass filter. The camera was
mounted on the arm attached to head and was pointing at the right eye. The eye
was illuminated with single IR LED placed off the axis of the eye that caused
"dark pupil" effect, which was useful during a pupil detection. The system gen-
erated 20 - 25 measurements of a center of a pupil per second.

Both eye trackers were used in a usual points of regard calibration experi-
ment. The participants of the experiment were looking at a stimulus presented on
a screen. The stimulus was a circle pulsating on the screen to attract participant’s
attention. There were 29 different stimulus locations (Fig 1). The stimulus was
displayed for about 3 seconds in each location. The order of stimuli presentation
was the same for each session.

In both cases the experiment was done on a 1280 x 1024 (370mm x 295mm)
flat screen. The eye-screen distance was 500mm, vertical gaze angle was 40 deg
and horizontal gaze angle was 32 deg.

There were overall 88 sessions with 39 sessions for Jazz-Novo eye tracker and
49 sessions for VOG eye tracker.
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Fig. 1. Points used during sessions

3 Calibration algorithms

The objective of an eye tracker is to determine a gaze point - that is a place
where the user is looking at - with the best possible accuracy. There are three
main factors that influence the accuracy of an VOG eye tracker:

— Quality of the registered image
— Quality of the algorithm used for extracting image features
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— Quality of the algorithm that is used to map the extracted features to point

of regard (gaze point)

It is worth emphasizing that the aim of described study is to analyze how to
improve the third of the aforementioned elements, that is mapping image features
to point of regard (PoR).

The data was divided into training and testing part. The first 13 stimulus
locations (points) were used for training (Fig 1(a)). All tests and errors of the
estimation were always calculated on the last 16 points (Fig 1(b)). Various com-
binations of 13 points were used to create 61 sets differing in the number of
points used and their locations. The sets can be divided into five groups differ-
ing in the number of points. There were 19 sets of 5 points, 20 sets of 7 points, 9
sets of 9 points and 12 sets of 11 points prepared. Additionally, there was a one
"full" set of all 13 points used. Due to limited space, the detailed description of
the sets is not presented here.

Each of defined sets was then used to build a model mapping an eye tracker
output to gaze coordinates on the screen. Such a model consists of two functions:

rs = f(Te, ye) (1)

Ys = f(xeaye)

where z. and y. represent data obtained from an eye tracker and =4 and y, are
estimated gaze coordinates on a screen.

There are multiple possible regression functions to be used. In this study
three types of such functions were used: the polynomial functions, the artificial
neural network (ANN) and the support vector regression (SVR).

3.1 Polynomial functions

The most common choice for a calibration function is usage of polynomial func-
tions, which can differ in the degree and number of terms. Two comprehensive
studies analyzed possible solutions [3][1]. There were three classic functions used
in this work: a linear function, a quadratic function and a cubic function with
all possible terms.
Linear equation
Ts = wae + Bwye + Cw (2)

Ys = Any'e =+ Byye + Cy
Quadratic equation
Ts = Amxg + B:,;yg + Coe + Dyye + By (3)
Ys = Ay$g + Byyg + nye + Dyye + Ey
Cubic equation

Ts = wag + Bwyg + wagye + Dwxeyg + waeye
+ Fng =+ Gl‘yg + Hrye + Ixye + J:c
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ys = Aya + Byy> + Cya2ye + Dyzey? + Eyzeye
+ Fya? + Gyy? + Hyye + Lyye + Jy

For each function the coefficients were calculated based on training points
values using Levenberg-Marquardt algorithm.

3.2 ANN

The second type of function was an artificial neural network (ANN). An acti-
vation network with sigmoid function as an activation function was used. The
network was trained until the total train error was lower than 0.1, using the
Back Propagation algorithm, with normalized samples recorded during a ses-
sion. Configuration of the network consisted of two neurons in the input layer,
10 neurons in one hidden layer and two neurons as the output. ANN has been
already used in several eye tracing applications [6][17].

3.3 SVR

The Support Vector Regression (SVR) [14] was of the last of analyzed types. The
RBF kernel with parameters C' = 10 and v = 8 was used. The similar function
has been utilized for an eye tracker calibration in [12] and [9] but in completely
different setups.

4 Results

Experiments were conducted for all sets of calibration points and for all sessions
what gave 11.925 (39 sessions x 61 sets x 5 functions) models for Jazz-novo and
14.935 (49 sessions x 61 sets x 5 functions) models for VOG eye tracker. Every
model represented combination of a function, a session and a set of training
points. All models were checked using 16 testing points from the same session
(Fig 1(b)). The error represented in degrees (Eqcy) was calculated based on
them. Additionally, it was determinant coefficient (R?) calculated independently
for both axes.

L DR e i )

Ei (yi — 9)?
where y;, x; represent an observed value, y;, T; represent a value calculated by
model and ¥, Z is the mean of observed values.

It must be emphasized, that it takes some time an eye to react to stimulus
position change to fixate on another position. Such occurrence is called saccadic
latency and lasts approximately 100-300 msec. In many cases this first fixation
is not accurate and is corrected. During earlier experiments (not published yet)
it was calculated that the safest range of measurements to include for further
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studies is from 700 msec. to 1800 msec. after the stimulus position changed.
Therefore, only these measurements were taken into account in both training and
validation phases. It gave about 20-30 samples per point for VOG eye tracker
and more than 1000 samples for the Jazz-Novo eye tracker. As so big number
of features was computationally difficult for the ANN and the SVR methods,
Jazz-Novo data was downsampled to 50Hz by calculating a median for every 20
subsequent measurements. Such downsampling process didn’t affect results of

the calibration, which was checked using the polynomial functions.

4.1 Model validity

While checking the correctness and the accuracy of defined models, it occurred
that some models gave completely incorrect results for testing samples. It re-
sulted in R? coefficient values to become lower than zero, which means that the
modeled curve had errors higher than the average of testing samples. It was de-
cided to reject such models as completely not feasible. Additionally, the number
of rejections was calculated for each function and group (i.e. sets with the same
number of points). The model was rejected if any of R2 or R coefficients values
for that model was lower than zero. Such strict condition resulted in rejection of
14.7% models for VOG eye tracker. The rejection percentage for different groups
and functions is presented in Table 1. It can be observed that the rejection per-

Group| z?! x> x® [ANN|[SVR
5 16.2%132.4%87.2%(10.4%(15.9%
7 5.7%| 6.1%|35.1%| 2.2%| 3.8%
9 3.9%| 2.7%|14.5%| 1.4%| 0.9%
11 2.6%| 2.0%| 5.1%| 0.5%| 0.3%
13 2.0%| 2.0%| 2.0%| 0.0%| 0.0%

Table 1. Rejections percentage for VOG eye tracker

centage was lower when more calibration points were taken into account. For 5
points almost 90% of models were not feasible for the cubic (23) function. It must
be remembered that a cubic function requires calculation of 18 parameters so it
needs more data than e.g. a linear function. The ANN and the SVR functions
were stable for each class and the number of rejections was always lower than
for the polynomial functions. Similar results - but with higher rejection rates -
were achieved for the Jazz-novo eye-tracker. The only important difference was
that the ANN and the SVR functions gave much higher rejection rates for this
device.

4.2 Multidimensional analysis of the recorded data

Filtered data was analyzed taking few aspects into account. It was interesting to
check how the average error changed when various number of points constituted
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training set and what is an influence of a function used to build a regression
model. And finally a question on the impact of a calibration points layout on
defined model accuracy was asked. All issues were considered separately for both

eye trackers used in the experiments.

Functions comparisons. The first step of the analysis mentioned above was to
compare accuracy of different functions using Fq.4 value - that is average angular
error. As can be seen in table 2 the best average results for the VOG system

VOG Jazz

Func|Egeg| SD (|[Func|Egeg| SD

2 |2.717]1.846]] 2* [4.012] 1.895
SVR [2.786|1.680| «' [4.070[2.0188

b 13.135[1.965]] 2 [4.671] 1.762
ANN|3.268]1.650|{| ANN[5.388] 1.672

x> 13.485[1.770]| SVR |7.019] 1.705

Table 2. Errors by function

gave the quadratic function 22, However the difference between 22 and SVR is
not significant (p = 0.07). Significant differences can be noticed in relation to
other functions.

For Jazz the best function was 22 although the difference between z!' and 22
was not significant. What was interesting that the SVR and the ANN functions
were significantly worse for the Jazz-novo eye-tracker.

When errors for various number of points were analyzed, it occurred that for
5-points groups and VOG results the linear function (z') became better than
SVR and the significant difference can only be noticed for the ANN and the
cubic (z3) function being the worst methods (table 3). For Jazz ' function is
significantly the best function for 5-points calibration. On the contrary for 13-

VOG Jazz-novo
Func|Egeg| SD ||[Func|Egeq| SD
xt [4.427] 1.945|| x? [3.415[2.029
2 |4.786] 1.783|] «' [3.561[2.130
ANN|[6.037| 1.623][ SVR [3.588]1.867
2> 16.082] 1.618||ANN|3.986[1.797
SVR [8.100(1.1486|] «* [5.421]1.638
Table 3. Errors by function for sets with 5 points

points group the SVR method became the best method and the linear function
x! became significantly the worst one. For the Jazz-novo device all polynomial
functions were the best ones but with no significant differences (table 5).
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VOG Jazz-novo
Func|FEg4egq| SD ||[Func|Egeq| SD
SVR[1.9951.401|| «® [3.349]1.585

2> [2.138]1.510| «? [3.629[2.017
% [2.323[1.572] =" [4.079]2.321
ANN|2.328(1.385|| ANN |4.302|1.554
2t [2.930[1.894|| SVR [5.301]1.799
Table 4. Errors by function for 13 points set

Number of points comparison. When average errors were calculated for set
with various numbers of points it occurred that, as it could be expected, 13-
points set gave lowest errors (table 5). However, the differences between 13 and
11 points groups were not significant for both eye trackers. Additionally, when
similar comparison was done only for models that used 22 function (table 6), it
turned out that the differences between groups 13,11,9 and 7 were not significant.
It shows that higher number of calibration points not necessarily causes lower
error rates.

VOG Jazz-novo
Points|Egeg| SD ||Points|Egeq| SD
13 (2.341|1.594| 13 |4.455|2.737
11 (2.522]1.629| 11 |4.710|2.679
9 ]2.806|1.656 9 [5.130(2.769
7 (3.073|1.704 7 |5.546|2.817
5 [3.722|1.983 5 [6.338|2.697
Table 5. Errors by number of points in set

VOG ||Jazz-novo
Points|Egeg| SD ||Egeg| SD
13 ]2.323]1.572}|3.629|2.017
11 ]2.396(1.628(|3.662|1.948
9 [2.461|1.699(|3.801|1.933
7 |2.580|1.799|[3.891|1.770
5 |3.415|2.029|(4.786|1.783
Table 6. Errors by number of points in set for 2> function

Finding the best models. Searching for the best models, the comparison of
the Eg4eq errors was performed. All results were sorted with ascending order and
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ten sets with the lowest error values were analyzed. The analysis was done both
for each function independently and for all functions together, however data from

different eye trackers were treated as autonomous sets.

In table 7 there were presented the best results in form of ten sets with the
lowest Fg4eq, average error values. Once again, due to limitation of the paper
size, only results subset concerning polynomial functions were showed. It can

Jazz-novo VOG
Function|Points|INo| Egeg||Function|Points|No|Egeg
23 13| 1[3.349 23 11| 9[2.058
x> 7| 163.357 x> 13| 1[2.138
x! 7| 13(3.377 z? 11| 9[2.256
z2 11| 12[3.450 z2 9] 2[2.261
x> 9] 7(3.476 x> 71 1[2.265
z? 7| 13]3.480 x> 11| 1[2.267
z2 9| 2[3.518 z2 71 7]2.270
22 11| 1|3.545 3 11] 12[2.287
z° 11| 7(3.547 z° 7| 10[2.289
z2 11| 10[3.573 z2 11| 8[2.291

Table 7. Best ten sets with lowest Egeg.

be observed that for both devices the set 13 1 - that is the reference set using
all training points - together with the most complicated polynomial function 2?
provided one of the best results (the lowest Egeq error). But it turned out that
the differences between this set and other sets with lower number of points are
not significant. Especially for Jazz-novo there are two models (x2 7 16 and
x1_7 13) for which the results are almost the same. It shows that the number
of calibration points not necessarily results in lower error rates.

Interesting situation can be observed when analyzing the SVR and the ANN
functions. It occurs that for the VOG system SVR outperformed all other func-
tions (with 9 of 10 best models) and ANN gave results comparable to the polyno-
mial functions (with the best result 2.166 for ANN 11 8). Quite differently in
case of Jazz-novo eye-tracker the SVR methods provided very bad results (with
5.13 Egeq for set 13_1) and ANN was only a fraction better (with 4.30 for set
13_1). Such bad results require further studies.

In the next step sets differing in number and layouts of points were analyzed
in terms of their usefulness for building a calibration model. This analysis, based
on ten sets for which the lowest Eg4., error values were obtained, was done for
each of the functions used. It was expected that groups of the chosen sets would
be dominated by sets with higher number of calibration points. The conducted
studies confirmed this assumptions for cubic, ANN and SVR methods where sets
with 11 points constituted majority of a group. However, in case of linear and
quadratic functions, greater diversity of sets types was observed. There were sets
with 5, 7 and 9 points especially for the first of mentioned methods.
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These findings regard both types of eye-trackers although some differences
were noticed. It concerned the quality of results achieved for the particular func-
tions. The average error rates obtained in case of the Jazz-novo eye-tracker with
regard to linear and quadratic functions were lower than for cubic, ANN and
SVR ones, even though they were calculated using lower number of points. The
opposite situation was determined in case of the second eye-tracker. The cu-
bic, ANN and SVR methods provided the lower average error values than other
polynomial functions.

Point location comparison. As it was shown in the previous section, groups
with lower number of points may be as good as groups with higher number of
points when a correct function is used. In this section different sets with the same
number of points were compared to find out if the points location influences
error rates. For this purpose the average error for all analyzed functions and
for each set of points was calculated. The results for the VOG eye tracker are
gathered in table 8. Analysis of these results showed that in case of the VOG

Set Edeg Set Edeg Set Edeg

5 T7T|2.81 |7 2279 9_2 |2.56

5 2(327||7_7]1283| 9_8 |2.64

5 8(3.28 |7 _18/2.89| 9 1 |2.64

5 15/3.31||7_13{2.90| 9_6 |2.68
5 1(3.39|7_14|2.92| 9_7 (273

5 1913.74||7_ 81293 | 9_5 |2.78
5 17/3.86 |7 _15/2.93| 9_9 |2.97
5 3|3.87|(|7_17/2.93| 9 10]3.07

5 181393 |7 11294 9 3 |3.28
5 1213.93||7_10{3.04 || 11_9|2.28
5 414127 _16/3.05 |11 _1|2.36
5 111417 7_913.07 ||11_10|2.37
5 13|4.31|7_6|3.11|11_8|2.42
5 16/4.40| 7 _5(3.22||11_2|248
5 141447 |7 4133211 _7|248
5 1014.60 |7 _3(3.62| 11 _5|2.59
5 91613 (|7 _19|3.71 |11 12| 2.62
5 6|7.38 (|7 _12|3.72 |11 11| 2.63
5 5|7.75||7_20|3.76 || 11_6 | 2.66
7 1114.06 | 11_4]2.69

11 _312.70

Table 8. Errors for sets ordered by group and error rate (VOG)

eye tracker there were significant differences for all five points group (19 sets).
Among them the best set 5 7 (points: 3,6,9,12,13) giving average error 2.8 deg
and the worst set 5 5 (points: 1,7,9,12,13) with an average error equal to 7.74
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deg can be mentioned. After deeper layout examination it occurred that the
lowest errors are calculated for sets containing point number 3 and 6 (north and
south positions on the screen) and additionally of some points in the middle
(10,11,12,13). Utilizing points in corners of the screen resulted in significantly
higher errors. Similar situation was observed for the VOG system in case of seven
points group (20 sets) although the differences were not so significant (from 2.78
deg for set 72 to 4.06 for set 7 _11). There were no significant differences in

points layout for sets with 9 and 11 points noticed.

Studying results for the second eye tracker Jazz-novo it was observed that
there were significant differences in 5-points group as well. However, the results
varied from that obtained in the VOG case. Although the same two sets (5 5
and 5_6) were the worst ones, there were sets for which Jazz-novo worked much
better than VOG eye tracker. The 5 9 set with points on the left side of the
screen can be taken as an example. In general, points located in the corners of the
screen did not influence significantly Jazz-novo outcome - 5 19 set with points
1,5,7,8,9 was the fourth of best models. As it was stated above, their usage in
case of the VOG system entitled higher error rates.

Differences for all other groups (7,9 and 11) were not significant but similar
trends to the VOG system findings were observed.

5 Conclusions

The main goal of the research was to check repeatability of results for both
various regression functions being used and various numbers and layouts of cal-
ibration points. To achieve this goal two different eye trackers were used. Using
them two environments were developed to test five various functions operating
on 61 sets of calibration points. These sets differed with numbers of points and
their position on the screen. The obtained results were compared in terms of
type of device, type of function and type of calibration points sets. There were
some significant differences found. For instance simpler regression functions like
x! or z? operated better than more complicated (like 3 or SVR) on sets with
lower number of points. Some specific sets with 7 points gave results comparable
to 13 points sets. In the same time it was showed that calibration results highly
depend on the type of eye tracker: (1) Points locations in screen corners were
not a good solution for VOG while gave very good results for Jazz-novo. (2)
Regression functions SVR and ANN worked very good for VOG eye tracker and
very bad for Jazz-novo. (3) z? function outperformed z! function for VOG but
the results of both were similar for Jazz-novo. Therefore, pointing out the best
calibration set, which worked well for all functions and for both devices, turned
out to be difficult.

Because the presented studies focused on making the comparison described

above, the further research are planned to be aimed at an improvement of the
particular results separately for each eye tracker.
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